b/b/div簡單的測試,讓數院的周海教授看到了徐川的數學功底,也有些羨慕物院的陳正平。
能在剛進入大學階段就擁有堪比研究生功底的學生,他怎麼就沒有遇到過呢?
雖然沒有人規定一名學生不能有兩名老師,且儘管是完全不同的兩科目,他也不好厚著臉皮去和陳正平搶人。
“周老師,我有個問題想請教一下。”周海準備離開,但被徐川喊住了。
“哦?是什麼問題,說來聽聽。”周海有些好奇的問道。
徐川從椅子上取下掛著的書包,從裡麵掏出了一個灰色的筆記本,翻開找到這兩天的筆跡。
確認沒有找錯後遞給了周海。
“周老師,這是我這兩天在讀《線性算子的因式分解與巴拿赫空間的幾何性質》時列出來的一些問題,我推衍到一半解不開了,您幫忙看看?”
“行,我看看。”
周海伸手接過了筆記本,饒有興致的看去。
剛才的簡單詢問雖然讓他看到了徐川的數學功底,但卻沒有看到他的極限。
而能難住他的題目,必定能代表學識抵達了何方。
就讓他看看這名學生的深淺好了。
“這字,真漂亮。”
筆記本入手,上麵的整潔字跡就讓周海心中讚揚了一聲。
說實話,搞數學的,真就沒幾個字寫的好看的。
當然,搞數學的也不需要自己的字有多好看,研究階段隻要自己寫出來的東西能看懂就行。
這就跟搞編程的一樣,自己寫出來的代碼,隻要能運行,自己能看懂是啥意思啥功能就行了。
至於有沒有注釋什麼的,那重要嗎?
不重要。
至於真要證實或者研究出來了,大不了再費點功夫將論文敲到電腦裡麵去嘛。
所以基本上數學老師和數學家的字跡都是龍飛鳳舞的。
“ey''''&nbp;:&nbp;pe算子的特征值分布與計算。”
“定理一假設Ω?r?是有界開區域(不對邊界的正則性做要求),那麼存在單調上升的無界序列{λ}滿足0λ?≤λ?≤,i→∞λ=+∞。”
“定理二若Ω是立方體區域,也即形如[a?,b?]*[a?,b?]”
“定理三”
“若n(λ)是有界開區域Ω上的特征值計數函數,那麼,是否能在&nbp;r3中構造了一對等譜非等距同構分形鼓,並在此基礎上,證明其波數目函數有精確的第二項。”
筆記本上的字跡入目,周海的目光就全聚集到了這上麵。
“等譜非等距同構和分形鼓數學方麵的問題嗎?”
“在r3的基礎上構建一個等譜非等距同構分形鼓來證明波數目函數的第二項,有意思。”
“能利用區域單調性和極小性原理給出特征值的一個刻畫嗎?”
“唔,這個方法好像行不通的樣子?”