第二十四章 這個時空,唯一的名字!_走進不科學_思兔閱讀 
思兔閱讀 > 遊戲競技 > 走進不科學 > 第二十四章 這個時空,唯一的名字!

第二十四章 這個時空,唯一的名字!(2 / 2)

這是一個完美的邏輯遞進的陷阱,一個從物理到數學的局。

至於徐雲畫出這幅圖的理由很簡單:

楊輝三角,是每個數學從業者心中拔不開的一根刺!

楊輝三角本來就是咱們老祖宗先發明並且有確鑿證據的數學工具,憑啥因為近代憋屈的原因被迫掛在彆人的名下?

原本的時空他管不著也沒能力去管,但在這個時間點裡,徐雲不會讓楊輝三角與帕斯卡共享其名!

有牛老爺子做擔保,楊輝三角就是楊輝三角。

一個隻屬於華夏的名詞!

隨後徐雲心中呼出一口濁氣,繼續動筆在上麵畫了幾條線:

“艾薩克先生,您看,這個三角的兩條斜邊都是由數字1組成的,而其餘的數都等於它肩上的兩個數相加。

從圖形上說明的任一數c(n,r),都等於它肩上的兩數c(n1,r1)及c(n1,r)之和。”

說著徐雲在紙上寫下了一個公式:

c(n,r)=c(n1,r1)+c(n1,r)n=1,2,3,···n)

以及......

a+b)2=a2+2ab+b2

(a+b)3=a3+3a2b+3ab2+b3

(a+b)4=a4+4a3b+6a2b2+6ab3+b4

(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5

在徐雲寫到三次方那欄時,小牛的表情逐漸開始變得嚴肅。

而但徐雲寫到了六次方時,小牛已然坐立不住。

乾脆站起身,搶過徐雲的筆,自己寫了起來:

(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+a6!

很明顯。

楊輝三角第n行的數字有n項,數字和為2的n1次冪,(a+b)的n次方的展開式中的各項係數依次對應楊輝三角的第(n+1)行中的每一項!

雖然這個展開式對於小牛來說毫無難度,甚至可以算是二項式展開的基礎操作。

但是,這還是頭一次有人如此直觀的將開方數用圖形給表達出來!個數可表示為&n1),即為從n1個不同元素中取1個元素的組合數。

這對於小牛正在進行的二項式後續推導,無疑是個巨大的助力!

但是......

小牛的眉頭又逐漸皺了起來:

楊輝三角的出現可以說給他打開了一個新思路,但對於他現在所卡頓的問題,也就是p+pq)n的展開卻並沒有多大幫助。

因為楊輝三角涉及到的是係數問題,而小牛頭疼的卻是指數問題。

現在的小牛就像是一位騎行的老司機。

拐過一個山道時忽然發現前方百米過後一馬平川,景色壯美,但麵前十多米處卻有一個巨大的落石堆擋路。

而就在小牛糾結之時,徐雲又緩緩說了一句話:

“對了,艾薩克先生,韓立爵士對於楊輝三角也有所研究。

後來他發現二項式的指數似乎並不一定需要是整數,分數甚至負數似乎也是可行的。”

“負數的論證方法他沒有說明,但卻留下了分數的論證方法。”

“他將其稱為.....”

“韓立展開!”

.....

注:

這幾天有讀者一直問,再重申一下,這是科技文,後麵有現實情節的......

一本幾百萬字的書,這才哪兒到哪兒啊,就有人說啥主角啥事沒乾....

隻是我寫書的節奏曆來很慢,鋪的也會長一點,上本書一百四十萬字最強的才築基還隻有一位叻.....

我開書的時候就說過了,想看那種主角開局就大殺四方一二十章身家過億的可以另尋他作,我寫不了那種書。

第一章見牛頓,第三章甩萬有引力公式,第五章回歸現實,這有意義嗎?

況且主角節奏慢歸慢,無論是我自認為還是大多數讀者的反饋都表明,迄今為止的情節是有閱讀性的,這就夠了。

起點曆來是個包容性的平台,啥時候不寫快節奏的書就得挨噴了?

撓頭,費解。

請記住本書首發域名:..bigebar.



最新小说: 都市無極仙醫 崛起美洲1620 執劍魔法師 慘死重生,我當場改嫁渣男皇叔 特工17,給糖就不搗亂! 聖拳! 領主求生:開局木板建設海島帝國 繼承千億資產後,金絲雀不裝了 重生水滸我是西門慶 商界風雲:祁少的“追妻大作戰”